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Dielectric properties of interacting storage ring plasmas
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A dielectric function(DF) including collisional correlations is derived by linearizing the self-consistent
Vlasov equation with a Fokker-Planck collision integral. The calculation yields the same type of dielectric
function as in the standard theory of Schottky noise in storage rings. This dielectric function is compared with
the Mermin dielectric function derived from a kinetic equation with a relaxation-time approximation. We
observe that these functions are identical, however the Mermin DF is computationally advantageous. The limits
of both dielectric functions are given and the sum rules are proven. We apply these dielectric functions for
typical storage ring plasmas and calculate the stopping power and the plasmon excitation spectrum.
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PACS numbgs): 52.25.Wz, 41.75.Ak, 52.26.j, 52.40.Mj

[. INTRODUCTION relaxation processes between the degrees of freedom and
possible transversal cooling, the temperature difference is
During the past ten years experiments with ions (jp to ~ maintained.

U%2%) in storage rings gained importance in the field of spec- In this paper we focus on experiments done by the Heidel-
troscopy and plasma physics. The stored and cooled ioherg TSR group with®Be" and *2C®* ions cooled by an
beams have a high luminosity for recombination experimentslectron beanj1,4]. The °Be" ions can be cooled further
and inertial confined fusion investigations. In particular, it isdown to a few mK by applying laser coolingee Table)l
of basic interest to study the transition between the weak and For estimations about the ideality and collision numbers,
strong coupled plasma or even the transition to a crystallingve employ the longitudinal temperatufe. The density of
state of a cooled ion beafil]. The most important prereq- the ion beam can be calculated using the curjeat the
uisite for obtaining dense states is strong electron and lasddeam profile(the diameter measured by the beam profile
cooling. The electron cooling force can be described as stopnonitorsxgpy and the value of the betatron function on this
ping power acting on an ion beam in an electron plagja  position Bgpy,
Other plasma phenomena in dense beams are collective ex-
citations (plasmons, shear modewhich are detectable by .
the Schottky nois¢3]. All items—the pair distribution func- n= M_ 3
tion of a state, the stopping power, and the shape of the 2wa§PMRvo
collective excitations—are related to the dielectric function

(DF) €q,0). .. Herevg denotes the ion beam velociti is the ring radius,
Within the linear-response theory the polarizability andz is the charge state of the ions. The transversal @ne
I1(gq,w) [and altogether the dielectric functios(q,w)] is  amounts to 2.8.

defined by the variation of particle densiﬁyl(ﬁ,w) in reac- The gsser_ﬂial parameter for characterizing the coupling is
tion to an external fie@Uext(ﬁ,w) via the nonideality or plasma parameter

2 (4mn\ 13
—) 4

- on(q, ) e

(G,0)= 55— @ ' dmeoT! 3

The connection to the dielectric functi¢dF) is given by which is the ratio of the potential and thermal energy. Fur-
- - - ther essential quantities are the plasma frequency
€(q,0)=1+Vc(q)ll(q,w). 2

The captured ions in storage rings are moving in front of TABL_E I Parar_neter_s for several experiments in the TSR. The
. . . . explanations are given in the text. Data are frid].
a background of the confining fields ensuring approximately

the cha_rge n_eutrality in the system. This nearly neu_tral SYSparameter B& co+ o

tem of ions interacting via the Coulomb potent\} im-

mersed in a homogeneous background of opposite charge is n 2.3x108 m3  1.6x10° m™3® 2.9x108 m3

usually called a one-component plast@CBP. T 6 K 8000 K 35K
An unpleasant problem is the temperature anisotropy. The T 0.13 0.0031 0.23

longitudinal temperatureT() differs from the transversal A 1.7x10° s! 40x10° s! 3.4x102 gt

(T,) (referring to the beam axidecause only the longitu- ®p 21x10° s 92x10f s!  3.0x1C® s!

dinal direction is cooled directly. Even taking into account

1063-651X/99/561)/10159)/$15.00 PRE 59 1015 ©1999 The American Physical Society



1016 A. SELCHOW AND K. MORAWETZ PRE 59

ne II. DIELECTRIC FUNCTIONS WITH CORRELATIONS

wp= eo_m ) A. Mermin dielectric function

For calculating a dielectric function including collisions
between the particles with masg Mermin [7] suggested a
ne particle number conserving dielectric function. We briefly
\/ (6)  sketch his derivation for the classical case starting with a
€oksT kinetic equation in the relaxation-time approximation,

and the inverse screening length

Another important parameter characterizing the plasma is the

collision frequency, or friction coefficient, which is the _f(F,J,t)+5if(F,J't)+i uir.y if(F,J,t)
inverse relaxation time ot ar ar )

1 f(r,u,t)—fo(0)

AN=—=no(Vi) Vi, = (12
T T
7
2e2 @ This kinetic equation describes the development of a particle
U(U):47T(1zeokBT)A(v)' distribution functionf(r,v,t) consisting of an equilibrium

parth(J) and a nonequilibrium par&f(F,J,t)

Here o(vy,) is the cross section at thermal velocivfh . R R
= 2kgT/m for ion-ion collisions and\ (v) denotes the Cou- f(r,v,t)="1o(v)+ 8f(r,v,t). (13
lomb logarithm, e.g., in the Brooks-Herring approximation. .

The collisions between the ions play an essential role inThe mean fieldJ(r,t) is composed of an external part and a
this storage ring plasmas, being responsible for effects sugbart arising from the induced particle densiy,
as intrabeam scatterin@BS) [5]. That means an expansion . .
of the (ion) beam due to ion-ion collisions has to be sup- U(q,0) = 6Uet Von(q,w). (14
pressed by electron cooling. Consequently, for a more com- ) _ ) o
plete description a dielectric functiczsr(ﬁ,w) including these One gets the induced particle densdy by linearization of

collisions should be consider¢fl]. In this paper two practi- Iéq. (12) and |_ntegrat|ng the _solutlon df over the velocity

cal methods will be shown in Sec. Il. v. After Fourier transformatiotn— w andr—q the follow-
An essential property of every dielectric function is the ing polarization functiod1(q,w) is obtained:

fulfillment of the sum rules. The strongest are the longitudi-

nal frequency sum rule n(G “’)zf 56(6.0w)d%
* 2w 4,2 R (15
—Im e (g, 0)do=1 ®) Ho(q,w+i/7) ]
0 Ty = > > ; U exl(0, @)
1-V(o)Io(g,w+il7)
and the conductivity sum rule
with the RPA or Lindhard polarization function
A0 >
—Im €(g,0)do=—1; 9 q ., -
0 Ty — —=f(v)
- 5 Mav
moreover, the compressibility sum rule Ho(q"”):f d UJﬁ—wwL_i/r' (16)
o0 2 1 . . . . . . —
lim ~~im e (G 0)do=1 (10 The RPA dielectric functiorf2) in the classical limit reads
0 w
q—0-0 TWp, 2
=1+K— 1-2x e’xi Xcetzdt+i\/—x e*X<2:
and the perfect screening sum rule €(0,) 92 ¢ 0 Txe '

(17)

= 2 1 .
Iimf >~ —Im €(q,w)do=—1. (11) Y L
q—0J0 Tag @ ¢ 2kgTq’

The validity of these sum rules is an essential statemerand fulfills all sum rules(8)—(11). Shifting the frequency
about the quality and reliability of the dielectric function. into the complex plane according to E@.6), one gets the
The outline of the paper is as follows. In Sec. Il A we relaxation dielectric function. This expression does not fulfill
give a short rederivation of the Mermin DF, and the DF fromthe limit of static screening and has a non-Drude-like high-
a Fokker-Planck equation is given in Sec. Il B. In Sec. |l Cfrequency behavior which leads to a violation of the sum
we compare both DF’s, and the sum rules are proven in Secules(8)—(11).
I1 D. In Sec. lIl A we present the application to the stopping In [7] a more sophisticated dielectric function was sug-
power and in Sec. Il B we calculate the Schottky spectra. gested by considering the relaxation ansatz
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J L. . d I Jd
—frv,t)+o=f(rv,H)+ = —f(
dt ar ar

f(r,o,t)—To(r,v,t)
. .

(18

with respect to a local equilibrium distribution function

'-f' N _ mo
o(rv,t)=ex _2k3T+

instead of the global distributioho(J) in Eq. (12). In the

p+ S (T t)
kgT

(19
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Heree(q,»+i/7) denotes the dielectric functioid7) in the
relaxation-time approximation. It is easy to see that in the
limit 7—oo, the Mermin dielectric function reproduces the
RPA dielectric function(17) in the classical limit. Here we
can restrict ourselves to the classical case for the polarization
function. The original Mermin result is given by the quantum
RPA dielectric function.

B. The Vlasov-Fokker-Planck equation(VFP equation)

Now we examine another kinetic equation—the Vlasov
equation with the Fokker-Planck collision integral which has
been used to predict the Schottky noise of an ion bg2jn

simplest case one can specify the local distribution by a

small fluctuation in the chemical potentidl related to the
density fluctuatiordn.
The Mermin dielectric function is derived by solving Eqg.

(18) using an expansion of the local equilibrium distribution

function in powers ofsu,

qUO()

maqu

fo(d,0,@)=fo(v) - su(d,w), (20
Where5,u is determined by the particle number conservation

wén(q,w)=fvqsf(q,v,w)d% leading to[7]

- on *,
5M(q,w)=%-

Finally one obtains from Eq$18) and(20) for the polariza-
tion function

(21)

o(q,w+il7)

My(g,0)= (22)

. 1 /1 o(q,0+i/7)
1-ior| ™ Tg(q,0
Instead of Eq(15) we arrive at a density variation
. (g, 0+i/7) .
on(d,w)= ———= ex(,0) (29

1-V(Q)Hy(q,w+il7)

and with Eq.(2) the Mermin dielectric function finally has
the shape

N |

[l+|/(w7)][e(q w+ilT)—1]

u(r,t) o

J d N
f(rvt)+v %f(rv )+———f(rvt)
ar g M g
Jd(D ¢
—)\—(——+v f(rvt) (25
AR

The application of the Fokker-Planck collision term is valid
for weak collisiong(it means lowq values because it repre-
Nsents an expansion of the collision integral in momentum
space. With the collision integral of the Fokker-Planck equa-
tion one includes the fluctuations of the distribution function
due to collisions. It describes the balance between dynamical
friction X (/dv) (v f(r,v,t)) holding the velocity distribution
sharply near zero velocity and the diffusion
D(#%/av?)f(r,v,t) flattening the velocity distribution. The
coefficients\ and D in the Fokker-Planck equation are re-
lated by the Einstein relation

 keT
m’

>| O

(26)

As already mentioned above, the friction coefficientis
equal to the inverse relaxation time. Obviously, the drift co-

efficient\v is linear in the velocity as long as the diffusion
coefficientD is a constant. The Fokker-Planck collision term
ensures the particle conservation. Due to the Einstein relation
we have a proper balance between friction and diffusion. So
we expect that physics is included similar to the Mermin
extension of the simple relaxation-time approximation in the

ev| q, 0+ ot ) preceding paragraph.
: M We solve this Fokker-Planck equation again within the
oT  ¢(q,00-1 linear response. A sketch of the derivation can be found in
(24)  Appendix A with the result for the dielectric function
|
—1+K2 14— | PR TLCLIFE . L 2
evep(Q, @) = " kB_Tq_z_iwl | L+ LA iy (27)
m A
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function resulting from the conserving relaxation-time ap-
proximation.

Let us inspect now some special limits. Both dielectric
functions fulfill the static limit @w—0)

2

e(q,O)=1+% 29)

for all X in accordance with the classical DebyédHal re-
sult for static screening. In the long-wavelength limgit>-0
one gets the Drude formula for both dielectric functions

lim e )—1——“”2“
qLOE 4.@)= w(w+il)’

w—%

(29

FIG. 1. Comparison of the real parts of the RRdcles, Mer- ) )
min (squares and VFP dielectric functioridiamonds. We have For A—0 this formula reproduces the RPA behavior. In the
chosen temperatures of 0.6—60 K available in the longitudinal dilimit of strong friction A —o we get in agreement witf8]
rection of an ion beam and wave numbers below and abov@nd[8] also Eq.(29). The long-wavelength and the strong
the inverse Debye lengthc (6). The particle density isn  friction limits are identical.
=2.3x 10" m™3 of single charged beryllium ions. The real parts  For low temperatures there are differences between the
of Mermin and the VFP DF are identical. RPA dielectric function and the other correlated dielectric

functions. The real parts start in the static limit at the same

and ,F, denotes the confluent hypergeometric function. Thisvalue as the RPA dielectric function but drop down much
dielectric function has been given 8] and is valid for an €arlier(in Fig. 1 one sees four orders of magnitude at one-
isotropic plasma in three dimensions. tenth of the inverse Debye length and two orders of magni-
tude at ten times the inverse Debye lengthhere are no
zeros in the real part. Accordingly, the imaginary part is
shifted in the same fashion. It is one magnitude broader than

Up to now we have used different kinetic equations leadthe RPA imaginary part and has only two-thirds of its height.
ing to two different dielectric functions. It is of great interest FOr temperatures higher than 50 K the RPA dielectric func-
how these functions are related to each other and wheth&on and the Mermin and VFP dielectric functions become
these dielectric functions are valid in the storage ring plasidentical.
ma’s realm of temperature, density, and friction coefficient.
In Figs. 1 and 2 both dielectric functions are plotted in de- D. Sum rules
pendence on the frequency for several wave numbers and The most interesting question is whether the dielectric

temperatures. _ ~ function fulfills the sum ruleg8)—(11). Due to Eq.(29) all
We see that within the numerical accuracy of the picture resented dielectric functions lead to R(a Yo for
no difference is visible between the dielectric function of af;r ew. Since poles due to the relaxationet]i’r;)e o‘::)cur onlv in
Fokker-Planck collision integral and the Mermin dielectric Yew. P y
the lower half plane we have

Jw —e Yqw) -1
do———=
—o0 (w+in)

from which we see that the dielectric functions fulfill the
Kramers-Kronig relations

C. Comparison of both dielectric functions
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o =2 1me Xq,0) do
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2
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(31)

Ime(q,w)

Re e—l(a,w)—1=Pf

w—w

50.0 4 0.005

where the P denotes here the Cauchy principle value.

From Eq.(31) we get with Eq.(28) in the static limit just
the compressibility sum rul¢10). The longitudinalf-sum
rule (8) follows as well from Eq(31). To see this we observe
that due to time reversibilitg(q, — w) = €* (q,w) holds and
we can write

0.0 - <+ 0.000

60K 10k

162 4 1010 102 4 8 165 10‘10 12-0‘005

wfs™

100 100 10° 10° 10 10

FIG. 2. Comparison of the imaginary parts of the Rigkcles,
Mermin (squares and VFP DF(diamond$. The same density and lim Re E‘l(q,w)
temperatures are chosen as in Fig. 1. The imaginary parts of Mer- w—«
min and the VFP DF are identical.

2 (= — —
=1+ lim EJ do Im e Y(q,w).
- 0

o 32
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Using Eq.(29) we obtain just thd-sum rule(8).

Since the same Kramers-Kronig relati¢dil) holds also 0.050 | —— RPAT=1 Kn=2.3x10° m®
for e instead ofe 1, we see that the corresponding free sum e O 2 510"
rules(9) and(11) are also fulfilled. - - - - Mermin DF

This completes the proof that both correlated dielectric 0.040

functions fulfill the sum rules. We can state, therefore, that
both dielectric functions are properly valid in the interesting £ o.030
scope and can be used to describe the phenomena in cold ann§
dilute storage ring plasmas. Since the Mermin dielectric ¥
function is computationally much easier to handle than the
VFP DF, we will use the Mermin dielectric function further

on. 0.010 |

em)

0.020 |

Ill. APPLICATION TO STORAGE RING PLASMAS

. . . 0.00 1 0100 20100 30100 40:00 50.00
We continue now to apply the correlated dielectric func- °Be" energy [eV]

tion derived in the preceding paragraph to typical storage . L . .
ring plasmas. We would like to discuss two important quan- F'G- 3. The stopping power ofBe” ions in an electronic

tities here: the stopping power of ions in an electron plasm&!asma versus ion energy. The classical Lindhard reghidk lines
and the occurring plasmon excitations. is compared with the Mermin resufthin lineg for two different

temperatures. The plasma parameterslard.77 (solid lineg and
) I'=0.13 (dashed lines respectively.
A. Stopping power

The stopping power, i.e., the energy transfer of a particlgions. We observe that for a weakly coupled storage ring

to a plasma, is given in terms of the dielectric functioN®y plasma with a temperaturef & K and a density of
2.3x 10" m~3, which corresponds to a nonideality &f
hwong(fo)Va(q)2m e~ X(q. /o) =0.13, almost no differences are observed between the Mer-
(27h)3 B aa ’ : min and Lindhard results. For higher coupling by lower tem-
(33 perature 61 K corresponding td"'=0.77, we see that the
Mermin stopping power becomes smaller than the Lindhard

Heren, denotes the Bose function amj, is the Coulomb  result. Since the friction is dependent on the squared density
potential of the particlea. We observe that the sum about but only on temperature via the Coulomb logarithm, we find
different plasma species is condensed in the dielectric funca stronger dependence on the density. This is illustrated in
tion. It is noteworthy to remark that this result is valid for Figs. 3—5. We see that with increasing density the deviations
any arbitrary degeneracy. The derivation presented9in between the Mermin and Lindhard results become appre-
shows that the resul33) is more generally valid than has ciable.
been derived earligil0-17. Higher-order correlations such  So far we have generalized the dielectric theory of stop-
as vertex corrections can be incorporated in the dielectriping power by the inclusion of collisions. It is instructive
function, such that Eq33) remains valid[9]. This fact is now to compare the results directly with the stopping power
important for dense solid-state plasmas which have been
used recently for stopping experiments, where the ré3a@Jt 0.60
is applicable as well. A more explicit form can be given by
carrying out the angular integratigig=7%Kk]

IE, 2 J' d3q
ot h

0.50

2
JEq, 265 1 fwdk —— RPAT=1 Kn=2.3x10" m™
—_— = —— Mermin DF
at megu(t) Jo K 0.40 ——-= T - matrix

v(tk+ ik?/2m,
X

dwwng(w)ime Yk o). (34
—v(t)k+ fik?/2m,

dE/dx [eV/cm]
o
w
(=3

Neglecting the quantum effects in E@®4) which represent 020t

an internal ionic cutoff due to the thermal de Broglie wave-

length, we get the standard result of dielectric theory, o0 |

OE, 23 1 (=dk [v(tk .

at meqv(t)Jo K Jo do wime “(fik ), (39 0% 00 10.00 200 energy[:\%oo 40.00 50.00
from which all known special cases can be derivéd, FIG. 4. The stopping power ofBe™ ions in an electronic
among them the well-known Bethe formula. We use®d)  plasma versus ion energy. The classical Lindhard réthittk line)
where no artificial cutoff is needed further on. is compared with the Mermin resuthin line) and the T-matrix

In Fig. 3 we have plotted the stopping power Be" result(dashed lingof binary collisions(36). The plasma parameter
calculated with the Mermin and the Lindhard dielectric func-is I'=1.65.
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0.06 T T T T 50_00‘
0.05 H
40.00 H
13 -3
—— RPAT=1Kn=2.3x10"m —— RPAT=1Kn=2.3x10" m™®
0.04 —— Mermin I?F 4 —— Mermin DF
-e== T - matrix ---- T - matrix

30.00

0.03

dE/dx [eV/cm)
dE/dx [eV/cm]

20.00
0.02

10.00 |
0.01

0'O%.oo 10100 20100 soioo 40100 50.00 0'0%.00 10 00 20 00 30 00 40 00 50.00
*Be” energy [eV] °Be" energy [eV]
FIG. 5. Same situation as in Fig. 4, but lower denslty FIG. 6. Same as in Fig. 4, but density is now four orders of
=0.77. magnitudes higherl{=16.5).

in the binary collision approximation. If@] the following  power in the right direction. The best description is still
expression for the stopping power was derived from thegiven by theT-matrix result(36).
Boltzmann equation within th&-matrix approximation:

B. Plasmons
(9E nbUt ~Mpy /ZkBT . . . . .
_(U):E 5 f dp PPoby(p) The ion beam currert(t) is a fluctuating quantity due to
Jt b mb\/_ its granular(ionic) structure. Detecting the mirror charge on
2 the vacuum chamber of the ring and Fourier transforming
p=(1+my/m,) : : : :
x|lacosha—| 14+ ———— 22 lsinha (frequency analyzingone obtains the Schottky signal. It is
MakgT primarily used for analyzing the beam’s velocity distribution
¢ @ PPI2mykgT(1+ my /g2 (36) and hence _the Iongltudl_nal temperature, but also important
for measuring the particle number or the revolution fre-

. L, o quency of the beam. It is related to the dynamical structure
with the thermal velocity; =2kgT/m,, the abbre\{latlora factor S(d, ) by the equatio17]
=vp/kgT(1+my/my), and the quantum-mechanical trans-

port cross section (|3(q,0)|?~S(q,w), (39

Ut(p):f dQ (1—cos g)d_a-_ (37)  Where the angular brackets indicate the thermal averaging.
The well-known fluctuation-dissipation theoref8] con-

In [13] a fit formula is given which subsumed the numerical ‘
results for the transport cross section for a plasma with 10° ¢ e
chargeZ=1. In Figs. 3—5 we compare the results for the 7
dielectric theory of stopping power with and without colli-
sional contributions with the pure two-particle collision re-
sult of Eq. (36). We see that the two-particle collision ex- - g

pression is significantly smaller than the dielectric theory. -
For very strong coupling in Fig. 6 we see even a vanishing
contribution of the latter one indicating that the two-patrticle

10" }

dE/(vdx)
N
\
\\

collisions do not contribute any more but the energy transfer 107 | /'/;z/?
is mainly caused by collective spreading. In Fig. 7 we rep- ;{’
resent the reduced energy Id9s=e%/(127¢,T)] 107 ./‘/
/’//
)\lvth 1 dE (38) /’/
= dx 10° : :
keT v dx 107 10° 10’
ZF(3/2)

versus the coupling parametgF 2,

The dependence of the normalized energy loss from the FiG. 7. The normalized friction coefficieténergy lossfor the
coupling parameter is weaker in the Mermin case than in th&PA (solid line), the T-matrix result(dashed ling and the Mermin
RPA case but distinct from the numerical simulations. Nev-DF result(dot-dashed line The filled circles are simulation results
ertheless the involving of collisions modifies the stopping[14] which reproduce experimental ddis5,16].
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80.0

nects the imaginary part of the response functione(rﬁ,w)
and the dynamical structure factor

(o)
o
=]

S(q, o) T im e (G w)
q,w)=— — 1M € g,w
oVc(q)

with the Coulomb potential/c. In dense ion beamé.g.,

the &* LIR experiment one observes a double-peaked

Schottky spectrum. The two peaks commonly identified as

plasma waves propagate in two directions around the storage

ring. A frequency analysis of this beam current shows the 0 , ‘

propagating waves clearly as peaks in the spectra which are 3.082 3.084 3.086 3.088 3.090

theoretically well described if8,8]. We now use the identity o[10%7]

of the Mermin and VFP dielectric functions to compute the .

Schottky noise much easier within the Mermin DF. FIG. 8. The Schottky spectra of a dense Cafbo’;'“m_gbeam and
For numerical calculation one has to modify the plasmatlqe corresponding theoretical predictiom=(8.3x 10" m™, T

. . . . =11000 K.) Data are taken frofri9].
frequency, which differs from that of an isotropic plasma.
For a plasma in a conducting tube we h48¢

Ime '(q,0)/o [arb.units]
=
o

N
o
=)

in
1+Z [e(M,w+iN)—1]
~, NZ?%&°M [ 1o 1 ..
Oy ( n < §>. (40) ewM, oM =14+ = M erin-1 Y
TRoMeol 78 © eMO-1
Here N denotes the particles numbeig the radius of the with Eq. (17) for e(M,w+i\) and
beam chambernmg the radius of the beam,#R, is the cir-
cumference of the ring, an¥ is the number of plasma ;‘,2l
waves fitting in the ring, the so-called harmonic wave num- eM(M,0)=l+25—p2. (45)
w

ber. We assume for simplicity the nonrelativistic case, which
is valid in the TSR experiments®Be’: 0.04, %C0*:
0.1%) with y=1.

The wavelengthg is not a continuous variable but as-
sumes only discrete values=M/27R,. The fractionx?/q?
can now be expressed by )\=477(Ze)4;/\. (46)

€m Uth,ivf-h,H

In the next step we insert a relaxation time considering the
anisotropy in the thermal velocities, [5],

2 ~2
K, (41)  HereA again denotes the Coulomb logarithm. We have used
9°  dw? the modified Mermin dielectric function for calculating the
plasmonic excitation for &°C®* beam at an energy of 73.3
with the thermal frequency MeV and a revolution frequency afy/Ry=617 kHz M
=5). In (see Fig. 8 the expression Ine(M,w)/w is com-
kT pared with the Schottky measurement. We see that the modi-
wl=—2_ (42) fied Mermin dielectric function fits the Schottky spectra sat-
R3m isfactorily.
Inserting these parameters into the VFP dielectric function, IV. SUMMARY

one obtains . . . . .
In this paper we have described two dielectric functions

~ 12 including collisions. After numerical inspection we have
_ Wpl shown that the DF obtained from the VFP equation is iden-
GVFP(M,(!))—].JFZ e . . ip s . . .
Sw tical to the Mermin DF. Modifying the dielectric function for

storage ring purpose@nodified plasma frequency, discrete
11+ M2 5a? L M2 5aw? wave numbers or harmonicsie have derived the standard
' 2)\2 N2 | dielectric function for Schottky noise prediction for a three-
dimensional plasma beam. Because of the identity of both
(43 dielectric functions, one can use a Mermin dielectric function
for Schottky noise description, too. The second goal was a
This is the well-known standard permittivity in the Schottky better description of the stopping power acting on an ion
noise theory. Since the Mermin DF and the VFP DF arebeam in the cooler's electron gas. Here we would like to
identical, it is more practical to use the easier Mermin DF.state that including the collisions leads to a lower friction

We modify Eq.(24) according to the paramete{40)—(42), force than in the RPA predictions but obviously overesti-

X qFq
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mates the friction force compared with simulated and experiOne can identify the functionll,, as Hermite polynomials.
mental results. The lowest eigenfunction fan,=n,=n,=0 is the Maxwell
Further improvement has to be done to consider strongdistribution. The eigenvalues are
coupling effects in the relaxation time by using a matching
Coulomb logarithm. Efforts have also to be made to include Annn=—NNg+ny+n,+2k?). (A5)
AP : . Kyn; y Tz
the magnetic field in the cooler and the anisotropic Maxwell

distributions in the dielectric function. In the next step we insert for the right side the eigenvalues

and eigenfunctions of the inhomogeneous Fokker-Planck op-
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APPENDIX A: SOLUTION OF THE VLASOV-FOKKER-
PLANCK EQUATION ALG)
. . ' . g
We are following the main ideas ¢20]. At first we in- wn(K)= nT
troduce the reduced variables
R ﬁ kgT and expand the distribution functioa/@ﬁ)fo and the distor-
Vo™ ““2Vom (A1) tion 5f(d,k.t) in a sum of eigenfunctions of the Fokker-

Planck operator
After linearization of the VFP equatiof25), we arrive at

o

- = (9 %
9 . . 2in - L dfg(u
2 stRi0+ 2ind- kot o - 22 kUi og) a = fo(u)=k- 2 annnl/fnnn(u k),
g m P " (A7)
19 - A2
_)\E Eau+u . (A2) 5f(U kt)_nnzyzcnnn¢nnn

For the Fokker-Planck term including the second term of th
left side (the so-called inhomogeneous Fokker-Planck opera:
tor), one can consider the eigenvalue and eigenfunctions i
three dimensions,

%erforming a Fourier transformation— o we arrive at a
ﬁolutlon for the coefficients

. 9 1 [? . k Tk anU(k 0))
—2iANU-K+N—- 20 wnxnynz(k,u) Chnn= i (A8)
i \2aa" V2 —jw—N(ne+ny+n,+2k?)
_A”x”y”z(k)w”x”y”z(k’u)' (A3) Remembering Eq(15), we obtain
The eigenfunctions take the form after a coordinate transfor-
mationz=u-+2ik, 5n(|2,a))= E Ch.n,n f Unnon d3u (A9)
nyyn, XY 2 vl XYTZ
P \/ 1 [ m )3
"2 N p iyt 12ty e 27ke T =U(K, ) TTyep(K, ).

K2\~ (z—iK)? il
xe e an(zx)Hny(Zy)an(zz)' (Ad) Hence we get for the polarizability

A I'(3+n)T(3 +n)T(% +n )T (3 +n+ny)
Mypp(k,w) = TrkgT exde] 2 i 2(ny+ny+n;) X y z x T Ny

NN, n!nyIn ! (n,+ny)!(ny+ny+n,)!
(Ny+ Ny+n,+ 2k2) (y2k) 2MctnyFn)
X

- (A10)
—iw—N(Ng+ny+n,+2k?)

Using the relations
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F(% J’_nx)r(% +ny)F(%) +nz)r(% +n,+ ny) :2 77-_2 AL
Ny Ny N, n/!ny!nt(n,+ny)l(n,+ny+n,)! =~ ml
and
(=" exd —x]
= +
2 nl(x+n) 1F1(1,14 k) (A12)
we arrive finally at
Iyep(K, @) 1+— F (1 1+2K? iw'2k2> (AL3)
)= , —i—: _
Ve 2ksT| ™ 2AK2—iw” \

The dielectric function related to this polarizability was discussed in Sec. Il B.
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