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Dielectric properties of interacting storage ring plasmas

A. Selchow and K. Morawetz
Fachbereich Physik, Universita¨t Rostock, D-18051 Rostock, Germany

~Received 5 June 1998!

A dielectric function ~DF! including collisional correlations is derived by linearizing the self-consistent
Vlasov equation with a Fokker-Planck collision integral. The calculation yields the same type of dielectric
function as in the standard theory of Schottky noise in storage rings. This dielectric function is compared with
the Mermin dielectric function derived from a kinetic equation with a relaxation-time approximation. We
observe that these functions are identical, however the Mermin DF is computationally advantageous. The limits
of both dielectric functions are given and the sum rules are proven. We apply these dielectric functions for
typical storage ring plasmas and calculate the stopping power and the plasmon excitation spectrum.
@S1063-651X~98!13612-7#

PACS number~s!: 52.25.Wz, 41.75.Ak, 52.20.2j, 52.40.Mj
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I. INTRODUCTION

During the past ten years experiments with ions (p1 up to
U921) in storage rings gained importance in the field of sp
troscopy and plasma physics. The stored and cooled
beams have a high luminosity for recombination experime
and inertial confined fusion investigations. In particular, it
of basic interest to study the transition between the weak
strong coupled plasma or even the transition to a crystal
state of a cooled ion beam@1#. The most important prereq
uisite for obtaining dense states is strong electron and l
cooling. The electron cooling force can be described as s
ping power acting on an ion beam in an electron plasma@2#.
Other plasma phenomena in dense beams are collective
citations ~plasmons, shear modes! which are detectable by
the Schottky noise@3#. All items—the pair distribution func-
tion of a state, the stopping power, and the shape of
collective excitations—are related to the dielectric functi
~DF! e(qW ,v).

Within the linear-response theory the polarizabil
P(qW ,v) @and altogether the dielectric functione(qW ,v)# is
defined by the variation of particle densitydn(qW ,v) in reac-
tion to an external fielddUext(qW ,v) via

P~qW ,v!5
dn~qW ,v!

dUext
. ~1!

The connection to the dielectric function~DF! is given by

e~qW ,v!511VC~qW !P~qW ,v!. ~2!

The captured ions in storage rings are moving in front
a background of the confining fields ensuring approximat
the charge neutrality in the system. This nearly neutral s
tem of ions interacting via the Coulomb potentialVC im-
mersed in a homogeneous background of opposite char
usually called a one-component plasma~OCP!.

An unpleasant problem is the temperature anisotropy.
longitudinal temperature (Ti) differs from the transversa
(T') ~referring to the beam axis! because only the longitu
dinal direction is cooled directly. Even taking into accou
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relaxation processes between the degrees of freedom
possible transversal cooling, the temperature difference
maintained.

In this paper we focus on experiments done by the Heid
berg TSR group with9Be1 and 12C61 ions cooled by an
electron beam@1,4#. The 9Be1 ions can be cooled furthe
down to a few mK by applying laser cooling~see Table I!.

For estimations about the ideality and collision numbe
we employ the longitudinal temperatureTi . The density of
the ion beam can be calculated using the currentj of the
beam profile~the diameter! measured by the beam profil
monitorsxBPM and the value of the betatron function on th
positionbBPM,

n5
jQbBPM

2pZxBPM
2 Rv0

. ~3!

Herev0 denotes the ion beam velocity,R is the ring radius,
andZ is the charge state of the ions. The transversal tunQ
amounts to 2.8.

The essential parameter for characterizing the couplin
the nonideality or plasma parameter

G5
e2

4pe0kBTS 4pn

3 D 1/3

~4!

which is the ratio of the potential and thermal energy. F
ther essential quantities are the plasma frequency

TABLE I. Parameters for several experiments in the TSR. T
explanations are given in the text. Data are from@1,4#.

Parameter Be1 C61 e2

n 2.331013 m23 1.631013 m23 2.931013 m23

Ti 6 K 8000 K 3.5 K
G 0.13 0.0031 0.23
l 1.73107 s21 4.03105 s21 3.431012 s21

vpl 2.13106 s21 9.23106 s21 3.03108 s21
1015 ©1999 The American Physical Society
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vpl5Ane2

e0m
~5!

and the inverse screening length

k5A ne2

e0kBT
. ~6!

Another important parameter characterizing the plasma is
collision frequency, or friction coefficientl, which is the
inverse relaxation time

l5
1

t
5ns~v th!v th ,

~7!

s~v !54pS 2e2

12e0kBTDL~v !.

Here s(v th) is the cross section at thermal velocityv th
2

52kBT/m for ion-ion collisions andL(v) denotes the Cou
lomb logarithm, e.g., in the Brooks-Herring approximatio

The collisions between the ions play an essential role
this storage ring plasmas, being responsible for effects s
as intrabeam scattering~IBS! @5#. That means an expansio
of the ~ion! beam due to ion-ion collisions has to be su
pressed by electron cooling. Consequently, for a more c
plete description a dielectric functione(qW ,v) including these
collisions should be considered@6#. In this paper two practi-
cal methods will be shown in Sec. II.

An essential property of every dielectric function is t
fulfillment of the sum rules. The strongest are the longitu
nal frequency sum rule

E
0

` 2v

pvpl
2
Im e21~qW ,v!dv51 ~8!

and the conductivity sum rule

E
0

` 2v

pvpl
2
Im e~qW ,v!dv521; ~9!

moreover, the compressibility sum rule

lim
q→0

E
0

` 2

pvpl
2

1

v
Im e21~qW ,v!dv51 ~10!

and the perfect screening sum rule

lim
q→0

E
0

` 2

pvpl
2

1

v
Im e~qW ,v!dv521. ~11!

The validity of these sum rules is an essential statem
about the quality and reliability of the dielectric function.

The outline of the paper is as follows. In Sec. II A w
give a short rederivation of the Mermin DF, and the DF fro
a Fokker-Planck equation is given in Sec. II B. In Sec. II
we compare both DF’s, and the sum rules are proven in S
II D. In Sec. III A we present the application to the stoppi
power and in Sec. III B we calculate the Schottky spectra
e

n
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-
-

-
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II. DIELECTRIC FUNCTIONS WITH CORRELATIONS

A. Mermin dielectric function

For calculating a dielectric function including collision
between the particles with massm, Mermin @7# suggested a
particle number conserving dielectric function. We brie
sketch his derivation for the classical case starting with
kinetic equation in the relaxation-time approximation,

]

]t
f ~rW,vW ,t !1vW

]

]rW
f ~rW,vW ,t !1

]

]rW

U~rW,t !

m

]

]vW
f ~rW,vW ,t !

52
f ~rW,vW ,t !2 f 0~vW !

t
. ~12!

This kinetic equation describes the development of a part
distribution function f (rW,vW ,t) consisting of an equilibrium
part f 0(vW ) and a nonequilibrium partd f (rW,vW ,t)

f ~rW,vW ,t !5 f 0~vW !1d f ~rW,vW ,t !. ~13!

The mean fieldU(rW,t) is composed of an external part and
part arising from the induced particle densitydn,

U~qW ,v!5dUext1Vdn~qW ,v!. ~14!

One gets the induced particle densitydn by linearization of
Eq. ~12! and integrating the solution ofd f over the velocity

vW . After Fourier transformationt→v and r→q the follow-
ing polarization functionP(qW ,v) is obtained:

dn~qW ,v!5E d f ~qW ,vW ,v!d3v

~15!

5
P0~qW ,v1 i /t!

12V~qW !P0~qW ,v1 i /t!
dUext~qW ,v!

with the RPA or Lindhard polarization function

P0~qW ,v!5E d3v

qW

m

]

]vW
f ~vW !

vW qW 2v1 i /t
. ~16!

The RPA dielectric function~2! in the classical limit reads

e~q,v!511
k2

q2S 122xce
2xc

2E
0

xc
et2dt1 iApxce

2xc
2D ,

~17!

xc5A m

2kBT

v

q
,

and fulfills all sum rules~8!–~11!. Shifting the frequency
into the complex plane according to Eq.~16!, one gets the
relaxation dielectric function. This expression does not ful
the limit of static screening and has a non-Drude-like hig
frequency behavior which leads to a violation of the su
rules ~8!–~11!.

In @7# a more sophisticated dielectric function was su
gested by considering the relaxation ansatz
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]

]t
f ~rW,vW ,t !1vW

]

]rW
f ~rW,vW ,t !1

]

]rW

U~rW,t !

m

]

]vW
f ~rW,vW ,t !

52
f ~rW,vW ,t !2 f̃ 0~rW,vW ,t !

t
. ~18!

with respect to a local equilibrium distribution function

f̃ 0~rW,vW ,t !5expF2
mv2

2kBT
1

m1dm~rW,t !

kBT
G ~19!

instead of the global distributionf 0(vW ) in Eq. ~12!. In the
simplest case one can specify the local distribution b
small fluctuation in the chemical potentialdm related to the
density fluctuationdn.

The Mermin dielectric function is derived by solving E
~18! using an expansion of the local equilibrium distributio
function in powers ofdm,

f̃ 0~qW ,vW ,v!5 f 0~vW !2
qW ]W v f 0~vW !

mqW vW
dm~qW ,v!, ~20!

wheredm is determined by the particle number conservat
vdn(qW ,v)5*vW qW d f (qW ,vW ,v)d3v leading to@7#

dm~qW ,v!5
dn~qW ,v!

P~qW ,0!
. ~21!

Finally one obtains from Eqs.~18! and~20! for the polariza-
tion function

PM~qW ,v!5
P0~qW ,v1 i /t!

12
1

12 ivtS 12
P0~qW ,v1 i /t!

P0~qW ,0!
D . ~22!

Instead of Eq.~15! we arrive at a density variation

dn~qW ,v!5
PM~qW ,v1 i /t!

12V~qW !PM~qW ,v1 i /t!
dUext~qW ,v! ~23!

and with Eq.~2! the Mermin dielectric function finally has
the shape

eMS qW ,v1
i

t D511
@11 i /~vt!#@e~qW ,v1 i /t!21#

11
i

vt

e~qW ,v1 i /t!21

e~qW ,0!21

.

~24!
a

n

Heree(qW ,v1 i /t) denotes the dielectric function~17! in the
relaxation-time approximation. It is easy to see that in
limit t→`, the Mermin dielectric function reproduces th
RPA dielectric function~17! in the classical limit. Here we
can restrict ourselves to the classical case for the polariza
function. The original Mermin result is given by the quantu
RPA dielectric function.

B. The Vlasov-Fokker-Planck equation„VFP equation…

Now we examine another kinetic equation—the Vlas
equation with the Fokker-Planck collision integral which h
been used to predict the Schottky noise of an ion beam@3#,

]

]t
f ~rW,vW ,t !1vW

]

]rW
f ~rW,vW ,t !1

]

]rW

U~rW,t !

m

]

]vW
f ~rW,vW ,t !

5l
]

]vW S D

l

]

]vW
1vW D f ~rW,vW ,t !. ~25!

The application of the Fokker-Planck collision term is va
for weak collisions~it means lowq values! because it repre-
sents an expansion of the collision integral in moment
space. With the collision integral of the Fokker-Planck equ
tion one includes the fluctuations of the distribution functi
due to collisions. It describes the balance between dynam
friction l(]/]vW )„vW f (rW,vW ,t)… holding the velocity distribution
sharply near zero velocity and the diffusio
D(]2/]v2) f (rW,vW ,t) flattening the velocity distribution. The
coefficientsl and D in the Fokker-Planck equation are re
lated by the Einstein relation

D

l
5

kBT

m
. ~26!

As already mentioned above, the friction coefficientl is
equal to the inverse relaxation time. Obviously, the drift c
efficient lvW is linear in the velocity as long as the diffusio
coefficientD is a constant. The Fokker-Planck collision ter
ensures the particle conservation. Due to the Einstein rela
we have a proper balance between friction and diffusion.
we expect that physics is included similar to the Merm
extension of the simple relaxation-time approximation in t
preceding paragraph.

We solve this Fokker-Planck equation again within t
linear response. A sketch of the derivation can be found
Appendix A with the result for the dielectric function
eVFP~q,v!511
k2

q2F 11
iv

kBT

m

q2

l
2 iv

1F1S 1,11
kBT

ml2
q22 i

v

l
;
kBT

ml2
q2D G ~27!
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and 1F1 denotes the confluent hypergeometric function. T
dielectric function has been given in@3# and is valid for an
isotropic plasma in three dimensions.

C. Comparison of both dielectric functions

Up to now we have used different kinetic equations le
ing to two different dielectric functions. It is of great intere
how these functions are related to each other and whe
these dielectric functions are valid in the storage ring pl
ma’s realm of temperature, density, and friction coefficie
In Figs. 1 and 2 both dielectric functions are plotted in d
pendence on the frequency for several wave numbers
temperatures.

We see that within the numerical accuracy of the pict
no difference is visible between the dielectric function o
Fokker-Planck collision integral and the Mermin dielect

FIG. 1. Comparison of the real parts of the RPA~circles!, Mer-
min ~squares!, and VFP dielectric function~diamonds!. We have
chosen temperatures of 0.6–60 K available in the longitudinal
rection of an ion beam and wave numbers below and ab
the inverse Debye lengthk ~6!. The particle density isn
52.331013 m23 of single charged beryllium ions. The real par
of Mermin and the VFP DF are identical.

FIG. 2. Comparison of the imaginary parts of the RPA~circles!,
Mermin ~squares!, and VFP DF~diamonds!. The same density and
temperatures are chosen as in Fig. 1. The imaginary parts of M
min and the VFP DF are identical.
s
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function resulting from the conserving relaxation-time a
proximation.

Let us inspect now some special limits. Both dielect
functions fulfill the static limit (v→0)

e~q,0!511
k2

q2
~28!

for all l in accordance with the classical Debye-Hu¨ckel re-
sult for static screening. In the long-wavelength limitq→0
one gets the Drude formula for both dielectric functions

lim
q→0
v→`

e~q,v!512
vpl

2

v~v1 il!
. ~29!

For l→0 this formula reproduces the RPA behavior. In t
limit of strong friction l→` we get in agreement with@3#
and @8# also Eq.~29!. The long-wavelength and the stron
friction limits are identical.

For low temperatures there are differences between
RPA dielectric function and the other correlated dielect
functions. The real parts start in the static limit at the sa
value as the RPA dielectric function but drop down mu
earlier ~in Fig. 1 one sees four orders of magnitude at on
tenth of the inverse Debye length and two orders of mag
tude at ten times the inverse Debye length!. There are no
zeros in the real part. Accordingly, the imaginary part
shifted in the same fashion. It is one magnitude broader t
the RPA imaginary part and has only two-thirds of its heig
For temperatures higher than 50 K the RPA dielectric fu
tion and the Mermin and VFP dielectric functions becom
identical.

D. Sum rules

The most interesting question is whether the dielec
function fulfills the sum rules~8!–~11!. Due to Eq.~29! all
presented dielectric functions lead to Ree(qW ,v)}v22 for
largev. Since poles due to the relaxation time occur only
the lower half plane we have

E
2`

`

dv̄
e21~qW ,v̄ !21

~v̄1 ih!
50 ~30!

from which we see that the dielectric functions fulfill th
Kramers-Kronig relations

Re e21~qW ,v!215PE
2`

` 2 Im e21~qW ,v̄ !

v2v̄

dv̄

2p
~31!

where the P denotes here the Cauchy principle value.
From Eq.~31! we get with Eq.~28! in the static limit just

the compressibility sum rule~10!. The longitudinalf-sum
rule ~8! follows as well from Eq.~31!. To see this we observe
that due to time reversibilitye(q,2v)5e* (q,v) holds and
we can write

lim
v→`

Re e21~q,v!511 lim
v→`

2

v2pE0

`

dv̄ Im e21~q,v̄ !.

~32!

i-
e

r-
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Using Eq.~29! we obtain just thef-sum rule~8!.
Since the same Kramers-Kronig relation~31! holds also

for e instead ofe21, we see that the corresponding free su
rules ~9! and ~11! are also fulfilled.

This completes the proof that both correlated dielec
functions fulfill the sum rules. We can state, therefore, t
both dielectric functions are properly valid in the interesti
scope and can be used to describe the phenomena in col
dilute storage ring plasmas. Since the Mermin dielec
function is computationally much easier to handle than
VFP DF, we will use the Mermin dielectric function furthe
on.

III. APPLICATION TO STORAGE RING PLASMAS

We continue now to apply the correlated dielectric fun
tion derived in the preceding paragraph to typical stora
ring plasmas. We would like to discuss two important qua
tities here: the stopping power of ions in an electron plas
and the occurring plasmon excitations.

A. Stopping power

The stopping power, i.e., the energy transfer of a part
to a plasma, is given in terms of the dielectric function by@9#

]Ea

]t
52

2

\E d3q

~2p\!3
\vnB~\v!Vaa~q!2Im «21~q,\v!.

~33!

Herenb denotes the Bose function andVaa is the Coulomb
potential of the particlea. We observe that the sum abo
different plasma species is condensed in the dielectric fu
tion. It is noteworthy to remark that this result is valid fo
any arbitrary degeneracy. The derivation presented in@9#
shows that the result~33! is more generally valid than ha
been derived earlier@10–12#. Higher-order correlations suc
as vertex corrections can be incorporated in the dielec
function, such that Eq.~33! remains valid@9#. This fact is
important for dense solid-state plasmas which have b
used recently for stopping experiments, where the result~33!
is applicable as well. A more explicit form can be given
carrying out the angular integration@q5\k#

]Ea

]t
5

2ea
2

p«0

1

v~ t !E0

`dk

k

3E
2v~ t !k1 \k2/2ma

v~ t !k1 \k2/2ma
dvvnB~v!Im «21~\k,v!. ~34!

Neglecting the quantum effects in Eq.~34! which represent
an internal ionic cutoff due to the thermal de Broglie wav
length, we get the standard result of dielectric theory,

]Ea

]t
5

2ea
2

p«0

1

v~ t !E0

`dk

k E
0

v~ t !k
dv v Im «21~\k,v!, ~35!

from which all known special cases can be derived@9#,
among them the well-known Bethe formula. We use Eq.~34!
where no artificial cutoff is needed further on.

In Fig. 3 we have plotted the stopping power of9Be1

calculated with the Mermin and the Lindhard dielectric fun
c
t

and
c
e

-
e
-
a

e

c-

ic

n

-

-

tions. We observe that for a weakly coupled storage r
plasma with a temperature of 6 K and a density of
2.331013 m23, which corresponds to a nonideality ofG
50.13, almost no differences are observed between the M
min and Lindhard results. For higher coupling by lower te
perature of 1 K corresponding toG50.77, we see that the
Mermin stopping power becomes smaller than the Lindh
result. Since the friction is dependent on the squared den
but only on temperature via the Coulomb logarithm, we fi
a stronger dependence on the density. This is illustrate
Figs. 3–5. We see that with increasing density the deviati
between the Mermin and Lindhard results become app
ciable.

So far we have generalized the dielectric theory of st
ping power by the inclusion of collisions. It is instructiv
now to compare the results directly with the stopping pow

FIG. 3. The stopping power of9Be1 ions in an electronic
plasma versus ion energy. The classical Lindhard result~thick lines!
is compared with the Mermin result~thin lines! for two different
temperatures. The plasma parameters areG50.77 ~solid lines! and
G50.13 ~dashed lines!, respectively.

FIG. 4. The stopping power of9Be1 ions in an electronic
plasma versus ion energy. The classical Lindhard result~thick line!
is compared with the Mermin result~thin line! and theT-matrix
result~dashed line! of binary collisions~36!. The plasma paramete
is G51.65.
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1020 PRE 59A. SELCHOW AND K. MORAWETZ
in the binary collision approximation. In@9# the following
expression for the stopping power was derived from
Boltzmann equation within theT-matrix approximation:

]E

]t
~v !5(

b

nbv t

mb
2Ap

e2mbv2/2kBT

v E
0

`

dp p2sab
t ~p!

3Fa cosha2S 11
p2~11mb /ma!

makBT D sinhaG
3e2p2/2mbkBT~11mb /ma!2

~36!

with the thermal velocityv t
252kBT/mb , the abbreviationa

5vp/kBT(11mb /ma), and the quantum-mechanical tran
port cross section

s t~p!5E dV ~12cosu!
ds

dV
. ~37!

In @13# a fit formula is given which subsumed the numeric
results for the transport cross section for a plasma w
chargeZ51. In Figs. 3–5 we compare the results for t
dielectric theory of stopping power with and without col
sional contributions with the pure two-particle collision r
sult of Eq. ~36!. We see that the two-particle collision ex
pression is significantly smaller than the dielectric theo
For very strong coupling in Fig. 6 we see even a vanish
contribution of the latter one indicating that the two-partic
collisions do not contribute any more but the energy trans
is mainly caused by collective spreading. In Fig. 7 we re
resent the reduced energy loss@l l5e2/(12pe0T)#

l lv th

kBT

1

v
dE

dx
~38!

versus the coupling parameterZG3/2.
The dependence of the normalized energy loss from

coupling parameter is weaker in the Mermin case than in
RPA case but distinct from the numerical simulations. Ne
ertheless the involving of collisions modifies the stoppi

FIG. 5. Same situation as in Fig. 4, but lower densityG
50.77.
e

l
h

.
g

r
-

e
e
-

power in the right direction. The best description is s
given by theT-matrix result~36!.

B. Plasmons

The ion beam currentj (t) is a fluctuating quantity due to
its granular~ionic! structure. Detecting the mirror charge o
the vacuum chamber of the ring and Fourier transform
~frequency analyzing! one obtains the Schottky signal. It i
primarily used for analyzing the beam’s velocity distributio
and hence the longitudinal temperature, but also impor
for measuring the particle number or the revolution fr
quency of the beam. It is related to the dynamical struct
factor S(qW ,v) by the equation@17#

^uJ~q,v!u2&;S~q,v!, ~39!

where the angular brackets indicate the thermal averag
The well-known fluctuation-dissipation theorem@18# con-

FIG. 6. Same as in Fig. 4, but density is now four orders
magnitudes higher (G516.5).

FIG. 7. The normalized friction coefficient~energy loss! for the
RPA ~solid line!, theT-matrix result~dashed line!, and the Mermin
DF result~dot-dashed line!. The filled circles are simulation result
@14# which reproduce experimental data@15,16#.
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PRE 59 1021DIELECTRIC PROPERTIES OF INTERACTING . . .
nects the imaginary part of the response function Ime(qW ,v)
and the dynamical structure factor

S~qW ,v!52
kBT

vVC~qW !
Im e21~qW ,v!

with the Coulomb potentialVC . In dense ion beams~e.g.,
the C61 LIR experiment! one observes a double-peak
Schottky spectrum. The two peaks commonly identified
plasma waves propagate in two directions around the sto
ring. A frequency analysis of this beam current shows
propagating waves clearly as peaks in the spectra which
theoretically well described in@3,8#. We now use the identity
of the Mermin and VFP dielectric functions to compute t
Schottky noise much easier within the Mermin DF.

For numerical calculation one has to modify the plas
frequency, which differs from that of an isotropic plasm
For a plasma in a conducting tube we have@8#

ṽpl
2 5

NZ2e2M

2pR0
3me0

S ln
r C

r B
1

1

2D . ~40!

Here N denotes the particles number,r C the radius of the
beam chamber,r B the radius of the beam, 2pR0 is the cir-
cumference of the ring, andM is the number of plasma
waves fitting in the ring, the so-called harmonic wave nu
ber. We assume for simplicity the nonrelativistic case, wh
is valid in the TSR experiments (9Be1: 0.04c, 12C61:
0.15c) with g'1.

The wavelengthq is not a continuous variable but a
sumes only discrete valuesq5M /2pR0 . The fractionk2/q2

can now be expressed by

k2

q2
52

ṽpl
2

dv2
~41!

with the thermal frequency

dv25
2kBT

R0
2m

. ~42!

Inserting these parameters into the VFP dielectric functi
one obtains

eVFP~M ,v!5112S ṽpl

dv
D 2

3 1F1S 1,11
M2dv2

2l2
2

iv

l
,
M2dv2

2l2 D .

~43!

This is the well-known standard permittivity in the Schott
noise theory. Since the Mermin DF and the VFP DF a
identical, it is more practical to use the easier Mermin D
We modify Eq.~24! according to the parameters~40!–~42!,
s
ge
e
re

a
.

-
h

,

e
.

eM~M ,v1 il!511

S 11
il

v D @e~M ,v1 il!21#

11
il

v

e~M ,v1 il!21

e~M ,0!21

~44!

with Eq. ~17! for e(M ,v1 il) and

eM~M ,0!5112
ṽpl

2

dv2
. ~45!

In the next step we insert a relaxation time considering
anisotropy in the thermal velocitiesv th @5#,

l54p~Ze!4
n

e2m2v th,'v th,i
2

L. ~46!

HereL again denotes the Coulomb logarithm. We have u
the modified Mermin dielectric function for calculating th
plasmonic excitation for a12C61 beam at an energy of 73.
MeV and a revolution frequency ofv0 /R05617 kHz (M
55). In ~see Fig. 8! the expression Ime(M ,v)/v is com-
pared with the Schottky measurement. We see that the m
fied Mermin dielectric function fits the Schottky spectra s
isfactorily.

IV. SUMMARY

In this paper we have described two dielectric functio
including collisions. After numerical inspection we hav
shown that the DF obtained from the VFP equation is id
tical to the Mermin DF. Modifying the dielectric function fo
storage ring purposes~modified plasma frequency, discre
wave numbers or harmonics! we have derived the standar
dielectric function for Schottky noise prediction for a thre
dimensional plasma beam. Because of the identity of b
dielectric functions, one can use a Mermin dielectric functi
for Schottky noise description, too. The second goal wa
better description of the stopping power acting on an
beam in the cooler’s electron gas. Here we would like
state that including the collisions leads to a lower fricti
force than in the RPA predictions but obviously overes

FIG. 8. The Schottky spectra of a dense carbonium beam
the corresponding theoretical prediction. (n58.331013 m23, Ti
511 000 K.) Data are taken from@19#.
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mates the friction force compared with simulated and exp
mental results.

Further improvement has to be done to consider stro
coupling effects in the relaxation time by using a match
Coulomb logarithm. Efforts have also to be made to inclu
the magnetic field in the cooler and the anisotropic Maxw
distributions in the dielectric function.
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APPENDIX A: SOLUTION OF THE VLASOV-FOKKER-
PLANCK EQUATION

We are following the main ideas of@20#. At first we in-
troduce the reduced variables

uW 5A m

2kBT
vW , kW5

qW

l
AkBT

2m
. ~A1!

After linearization of the VFP equation~25!, we arrive at

]

]t
d f ~kW ,uW ,t !12iluW •kWd f ~kW ,uW ,t !2

2il

m
kW•U~kW ,t !

] f 0~uW !

]uW

5l
]

]uW
S 1

2

]

]uW
1uW D . ~A2!

For the Fokker-Planck term including the second term of
left side~the so-called inhomogeneous Fokker-Planck ope
tor!, one can consider the eigenvalue and eigenfunction
three dimensions,

F22iluW •kW1l
]

]uW
•S 1

2

]

]uW
1uW D Gcnxnynz

~kW ,uW !

5Lnxnynz
~kW !cnxnynz

~kW ,uW !. ~A3!

The eigenfunctions take the form after a coordinate trans
mationz5u12ik,

cnxnynz
5A 1

nx!ny!nz!2
nx1ny1nz

S m

2pkBTD 3

3ek2
e2~zW2 ikW !2

Hnx
~zx!Hny

~zy!Hnz
~zz!. ~A4!
i-

g-

e
ll

.

e
-

in

r-

One can identify the functionsHn as Hermite polynomials.
The lowest eigenfunction fornx5ny5nz50 is the Maxwell
distribution. The eigenvalues are

Lnxnynz
52l~nx1ny1nz12k2!. ~A5!

In the next step we insert for the right side the eigenval
and eigenfunctions of the inhomogeneous Fokker-Planck
erator

]

]t
d f ~kW ,uW ,t !2

2il

m
kW•U~kW ,t !

] f 0~uW !

]uW
5l (

nxnynz

mnxnynz
cnxnynz

~A6!

with

mn~kW !5
Ln~qW !

l

and expand the distribution function (]/]uW ) f 0 and the distor-
tion d f (uW ,kW ,t) in a sum of eigenfunctions of the Fokke
Planck operator

kW
]

]uW
f 0~uW !5kW• (

nxnynz

`

aW nxnynz
cnxnynz

~uW ,kW !,

~A7!

d f ~uW ,kW ,t !5 (
nxnynz

`

cnxnynz
cnxnynz

.

Performing a Fourier transformationt→v we arrive at a
solution for the coefficients

cnxnynz
5

il

kBT
kW•aW nU~kW ,v!

2 iv2l~nx1ny1nz12k2!
. ~A8!

Remembering Eq.~15!, we obtain

dn~kW ,v!5 (
nxnynz

cnxnynz
E

vol
cnxnynz

d3u ~A9!

5U~kW ,v!PVFP~kW ,v!.

Hence we get for the polarizability
PVFP~k,v!5
l

2pkBT
exp@k2# (

nxnynz

i 2~nx1ny1nz!
G~ 1

2 1nx!G~ 1
2 1ny!G~ 1

2 1nz!G~ 1
2 1nx1ny!

nx!ny!nz! ~nx1ny!! ~nx1ny1nz!!

3
~nx1ny1nz12k2!~A2k!2~nx1ny1nz!

2 iv2l~nx1ny1nz12k2!
. ~A10!

Using the relations
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(
nx ,ny ,nz

G~ 1
2 1nx!G~ 1

2 1ny!G~ 1
2 ! 1nz)G~ 1

2 1nx1ny!

nx!ny!nz! ~nx1ny!! ~nx1ny1nz!!
5(

m

p2

m!
~A11!

and

(
n

`
~2x!n

n! ~k1n!
5

exp@2x#

k 1F1~1,11k,x! ~A12!

we arrive finally at

PVFP~k,v!5
p

2kBTF11
iv

2lk22 iv
1F1S 1,112k22 i

v

l
;2k2D G . ~A13!

The dielectric function related to this polarizability was discussed in Sec. II B.
v.
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